
Cite as: Sehole, HAH.: Implementation of the Dynamically Thickened Flame LES Model for Premixed and

Non-Premixed Turbulent Combustion in OpenFOAM . In Proceedings of CFD with OpenSource Software,

2024, Edited by Nilsson. H., http://dx.doi.org/10.17196/OS CFD#YEAR 2024

CFD with OpenSource software

A course at Chalmers University of Technology
Taught by Håkan Nilsson

Implementation of the Dynamically
Thickened Flame LES Model for

Premixed and Non-Premixed Turbulent
Combustion in OpenFOAM

Developed for OpenFOAM-v10

Author:
Hafiz Ali Haider Sehole
Aalto University
ali.haider@aalto.fi

Peer reviewed by:
Ville Vuorinen

Saeed salehi
Paria Khosravifar

Library on GitHub: https://github.com/hahspk/DTF
Licensed under CC-BY-NC-SA, https://creativecommons.org/licenses/

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some
other OpenSource software are introduced to the students. Any reader should be aware that it
might not be free of errors. Still, it might be useful for someone who would like to learn some

details similar to the ones presented in the report and in the accompanying files. The material has
gone through a review process. The role of the reviewer is to go through the tutorial and make
sure that it works, that it is possible to follow, and to some extent correct the writing. The

reviewer has no responsibility for the contents.

February 4, 2025

http://dx.doi.org/10.17196/OS_CFD#YEAR_2024
https://github.com/hahspk/DTF

Learning outcomes

The main requirements of a tutorial in the course are that it should teach the four points: How to
use it, The theory of it, How it is implemented, and How to modify it. Therefore, the list of learning
outcomes is organized with those headers.

The reader will learn:

How to use it:

• How to use the turbulence-chemistry interaction (TCI) model in OpenFOAM.

• How to use the new TCI model, Dynamic Thickened Flame (DTF), when setting up a case.

The theory of it:

• The role of turbulence-chemistry interaction (TCI) models and how they impact the chemical
of combustion simulations.

• Overview of TCI models available in OpenFOAM, along with their advantages and limitations.

• The theory behind the modification of reaction rates and diffusion coefficients in the species
transport equation and their connection with TCI models.

• Description of calculating the reaction rates and diffusion coefficient modification for DTF.
Details in the modification section.

How it is implemented:

• In OpenFOAM, reactive flow solvers obtain chemical reaction information through integrated
chemistry models, which compute species concentrations, reaction rates, and heat release.

• A TCI model in OpenFOAM is required by the solver to handle the coupling between turbulent
eddy structures and chemical reaction rates.

How to modify it:

• Implementing a new TCI (Turbulence-Chemistry Interaction) model in OpenFOAM requires
two modifications to the species transport equation:

1. Adjustment of the reaction rate source term by multiplying it with the efficiency function
(E) and dividing it by the thickening factor (F).

2. Modification of the diffusion coefficient by multiplying it with the efficiency function (E)
and the thickening factor (F).

The PaSR model serves as a suitable template for this implementation, as it already includes
the necessary framework for modifying the reaction rate source term.

• Guidance on setting up a simple, coarse LES (Large Eddy Simulation) case to test the newly
implemented TCI model.

1

Prerequisites

To gain the most benefit from this report, the reader is expected to have:

• A foundational understanding of fluid mechanics, combustion, and turbulence

• Familiarity with CFD (Computational Fluid Dynamics) and turbulence modeling, particularly
Large Eddy Simulation (LES)

• Understanding of turbulence-chemistry interaction models in OpenFOAM, especially PaSR.

• Thickened Flame Model code [1] implemented by Rintanen [2] during his thesis work.

• Experience in setting up and running cases in OpenFOAM

• Basic knowledge of object-oriented programming and C++ syntax

• The ability to locate files, classes, and functions within the OpenFOAM source code

2

Contents

1 Introduction 7
1.1 Motivation and Background . 7
1.2 Report Outline . 8

2 Theory 9
2.1 Governing Equations . 9
2.2 Diffusion . 9
2.3 Reaction Rate . 10

2.3.1 Laminar Model . 10
2.3.2 Partially Stirred Reactor (PaSR) . 10
2.3.3 Dynamic Thickened Flame (DTF) . 11

2.3.3.1 Thickening Factor . 11
2.3.3.2 Flame Sensor . 11
2.3.3.3 Efficiency Function . 11
2.3.3.4 Laminar Flame Speed . 12

3 PaSR: OpenFOAM Implementation 13
3.1 Registration . 14
3.2 Constructor . 14
3.3 Destructor . 16
3.4 Member Functions . 16

3.4.1 correct() . 16
3.4.2 R(volScalarField& Y) . 17
3.4.3 Qdot() . 17
3.4.4 read() . 17

4 DTF: Implementation 18
4.1 Introduction to PaSR & TFM . 18
4.2 Introduction to TFM & DTF . 19
4.3 Registration . 20
4.4 Constructor . 20

4.4.1 Update the DTF.H . 20
4.4.2 Update the DTF.C . 21

4.5 Member Functions . 22
4.5.1 Implementation of the flameSpeed() Function 22
4.5.2 Update Thickening Factor . 26
4.5.3 Efficiency Function Implementation in DTF 27

4.5.3.1 Adding Getter Functions to DTF.H 27
4.5.3.2 Update the Efficiency Function Constructor DTF.C 27
4.5.3.3 Update efficiencyFunction.H . 27
4.5.3.4 Update efficiencyFunction.C . 28
4.5.3.5 Update efficiencyFunctionNew.C 28
4.5.3.6 Colin Efficiency Function Implementation 29

3

Contents Contents

4.5.4 R(volScalarField& Y) . 30
4.5.5 Qdot() . 30

4.6 DTFThermophysicalTransportModels . 31

5 Test Cases and Results 32
5.1 Case 01: 3D Freely Propagating Hydrogen Flame . 32

5.1.1 Results . 34
5.2 Case 02: Turbulent Hydrogen Flame . 34

5.2.1 Validation . 35

A Developed Codes 43
A.1 Dynamic Thickened Flame Header, DTF.H . 43
A.2 Dynamic Thickened Flame Constructor, DTF.C . 45
A.3 Efficiency Function: Colin Header, colin.H . 51
A.4 Efficiency Function Colin Constructor, colin.C . 52

B Case 01 Setup 55
B.1 Allclean and Allrun Scripts . 55
B.2 0 Directory . 55
B.3 constant Directory . 61
B.4 system Directory . 65

4

Nomenclature

Acronyms
DTF Dynamically Thickened Flame
LES Large Eddy Simulation
PaSR Partially Stirred Reactor
TCI Turbulence-Chemistry Interaction

English symbols
~j i Di�usive
ux of species i . kg=m2=s
~v Velocity vector .m=s
cp Speci�c heat capacity at constant pressure . J=(kg � K)
cms Wrinkling factor model constant
D Thermal di�usivity . m 2=s
D i Di�usion coe�cient for species i . m2=s
D iF Modi�ed di�usion coe�cient (DTF model) . m 2=s
E E�ciency function
F Flame thickening factor
Fs Dynamically calculated thickening factor
Fmax Maximum thickening factor
h Heat release rate . J=s
hmax Maximum heat release rate . J=s
Lei Lewis number for speciesi
RiF Modi�ed reaction rate (DTF model) . kg =m3=s
Ret Turbulent Reynolds number
S0

l Premixed laminar
ame speed . m=s
u0 Subgrid-scale velocity
uctuations. .m=s
Yi Mass fraction of speciesi

Greek symbols
� Adjustment factor for e�ciency function
� Scaling parameter for
ame sensor
� Filter width. .m
� e Test �lter width . m
� g Geometric cell size . m
� l Laminar
ame thickness . m
� 0

l Unthickened laminar
ame thickness . m
� 1

l Thickened
ame thickness. .m
� Turbulent dissipation rate. .m 2=s3

� Stretch function
� Reacting volume fraction
� Thermal conductivity . W =(m � K)
� e� E�ective viscosity . kg =(m � s)

5

Nomenclature Nomenclature

� Density . kg=m3

� c Chemical time scale . s
� k Mixing time scale . s
� Wrinkling factor

6

Chapter 1

Introduction

1.1 Motivation and Background

Turbulent combustion is one of the most challenging problems in physics due to the turbulence and
highly non-linear nature of chemical kinetics. To solve practical problems, engineers use turbulence
models that combine mathematical equations with experimental data, making them part science and
part approximation. These models rely on the concept that large vortices break down into smaller
ones until they dissipate, as in Large Eddy Simulations (LES) .

LES achieves a balance between computational cost and accuracy by resolving the larger scales of
turbulence while modeling the smaller, sub-grid scales. Pope [3] recommended resolving at least 80%
of the turbulent kinetic energy to ensure realistic large-scale results. To enhance accuracy, the LES
�lter width can be reduced, approaching the Kolmogorov scales [4], which decreases the in
uence of
unresolved scales and reduces reliance on sub-grid models. However, as long as turbulence remains
unresolved, sub-grid turbulence models are required. LES o�ers a range of well-validated sub-grid
turbulence models [5], such as the WALE model [6] , which performs well for many engineering
applications.

Combining turbulence with combustion introduces additional complexities. Combustion requires
the fuel and oxidizer to mix at the molecular level, which occurs through turbulent mixing. As eddies
of di�erent sizes break down into smaller ones, strain and shear at their interfaces enhance mixing and
molecular di�usion [7]. In the presence of a
ame, heat and radicals di�use from the reaction zone,
steepening gradients further. However, chemical reactions at these interfaces may alter the mixing
process in ways that are not fully understood, as combustion involves multiple reactions occurring
on di�erent time scales. It is the reason LES requires sub-grid combustion models to account for
unresolved small-scale turbulence and its interaction with chemical reactions. In OpenFOAM, the
known combustion models [8] for large eddy simulations are as follows,

ˆ Laminar : The e�ect of turbulent
uctuations on kinetic rates is neglected, and reaction rates
are determined by general �nite-rate chemistry directly.

ˆ Eddy-Dissipation Concept (EDC) : It assumes that reactions occur in regions of the
ow
where turbulence kinetic energy dissipation takes place. [9, 10, 11, 12].

ˆ Partially Stirred Reactor (PaSR) : Computes reaction rates considering both turbulent
mixing and chemical timescales.

The PaSR model serves as a approach for simulating turbulent premixed and partially premixed

ames in OpenFOAM. The PaSR is a model used in LES to approximate the combustion process. It
helps simulate how the turbulent
uid mixes and reacts chemically without having to resolve every
small-scale turbulent structure in the simulation. The PaSR model requires a skeletal mechanism
for fuel/air combustion and the transport properties of all species. It also includes a closure model
for the �ltered source terms that arise from LES. The consumption rates for each reaction are

7

1.2. Report Outline Chapter 1. Introduction

determined by both the mixing time scale and the chemical time scale, which are computed using
global
ame parameters and the turbulent time scale, respectively.

In comparison to PaSR, the newly implemented LES subgrid-scale turbulent combustion model in
OpenFOAM, Dynamically Thickened Flame (DTF) [13], is capable of handling combustion regimes
that fall between perfectly premixed and non-premixed conditions. Unlike other models, DTF
does not rely on prior assumptions about the
ame structure, enabling it to accurately simulate
scenarios where premixed and non-premixed combustion coexist. The theoretical framework of the
DTF model is detailed in Chapter 2, Section 2.3.3. DTF requires two modi�cations to the species
transport equation, Adjustment of the reaction source term by multiplying it with e�ciency function
(E) and divided by thickening factor (F). Modi�cation of the di�usion coe�cient by multiplying
it with an e�ciency function (E) and a thickening factor (F). In comparison to other TCI models
available in OpenFOAM that are widely used for combustion simulations, their capability di�erence
is represented in Table 1.1.

Table 1.1: Comparison ofDTFwith other TCI Models

TCI Model Non-Premixed Partially-Premixed Premixed
Laminar X
EDC X X
PaSR X X
DTF X X X

From Table 1.1, the Laminar model is primarily used for non-premixed combustion in Open-
FOAM, though it can also be applied to premixed
ames in Direct Numerical Simulation (DNS).
Similarly, the functionality of the Eddy-Dissipation Concept (EDC) and Partially Stirred Reactor
(PaSR) models for di�erent
ow regimes is summarized in Table 1.1, as per OpenFOAM's documen-
tation [14]. The Dynamic Thickened Flame (DTF) model [13], proposed in this report, represents
an implementation in OpenFOAM capable of handling multi-regime
ows.

The PaSR implementation serves as the optimal template for implementing the DTF model.
Analogous to PaSR (see Eq. 2.5), where the reaction rate source term is scaled by� , the DTF
model scales the reaction rate source term byEF . Additionally, the DTF model necessitates reim-
plementation of the ThermophysicalTransportModels library, where the product (EF) scales the
di�usion coe�cient.

1.2 Report Outline

In Chapter 2, the required theory related to the species transport equation is given, and further it
explains the di�usion coe�cient and reaction rate source term calculation using di�erent TCI models.
The details of TCI models Laminar, PaSR and DTF are explained in a subsequent section. Chapter
3, explains the PaSR implementation in OpenFOAM. Chapter 4 describes the implementation of
DTF over the existing code of TFMFoam. The case setup and results are described in Chapter 5.

8

Chapter 2

Theory

2.1 Governing Equations

Combustion is the process of converting chemical energy stored in fossil fuels into heat through
chemical reactions. The governing equations for any combustion model are based on the balance
laws for energy and chemical species. For a detailed derivation of these equations, readers are referred
to Williams [15]. The conservation equation for speciesi is expressed as

@
@t

(�Y i) + r � (� �! v Yi) = �r �
�!
j i + Ri ; (2.1)

where � is the mixture density, �! v is the velocity vector, Ri is the net production rate of speciesi
due to chemical reactions, and

�!
j i represents the di�usive
ux of species i .

2.2 Di�usion

The di�usive
ux
�!
j i in Eq.2.1 is driven by gradients in concentration and temperature. The molec-

ular transport process that causes these
uxes is complex, and a detailed explanation can be found
in Williams [15]. In turbulent combustion, however, turbulent transport dominates over molecular
transport, making it practical to use simpli�ed representations of di�usive
uxes. One common
simpli�cation is the binary
ux or mass di�usion approximation

�!
j i = � �D i r Yi ; (2.2)

where Yi is the mass fraction of speciesi and D i is the mass di�usion coe�cient of species i in the
mixture. However, in multicomponent systems, this approximation can violate mass conservation if
the di�usion coe�cients (D i) are not equal. This occurs because the sum of all
uxes must vanish,
and the total of all mass fractions must equal unity. Although Eq.2.2 is convenient for notation, it is
not suitable for laminar
ame calculations. To simplify further, it is often assumed that all di�usion
coe�cients D i are proportional to the thermal di�usivity D , given by

D =
�

�c p
; (2.3)

where � is the thermal conductivity and cp is the speci�c heat capacity at constant pressure. Using
this assumption, the Lewis numberL ei for speciesi is de�ned as

L ei =
�

�c pD i
=

D
D i

: (2.4)

The Lewis number is assumed to remain unity. The current implementation of the Dynamic Thick-
ened Flame (DTF) model uses a unity Lewis number approximation, where the di�usion coe�cient

9

2.3. Reaction Rate Chapter 2. Theory

is modeled usingunityLewisEddyDiffusivity model. Further, this report is not further getting
into the details of energy balance; the reader can refer to Peters [7].

2.3 Reaction Rate

The reaction rate source termRi from Eq. 2.1 can be computed using TCI models. In OpenFOAM,
reaction rates are calculated using di�erent TCI models, such as Laminar, EDC, and PaSR. This
report will focus on the Laminar and PaSR models. A solid understanding of these models in the
context of OpenFOAM will assist readers in implementing a new TCI model called DTF. This section
describes the equations used to calculate the reaction rate source term in these TCI models.

2.3.1 Laminar Model

The laminar model represents the simplest approach to modeling reaction rates. The model assumes
each computational cell is treated as a homogeneous reactor, and the reaction rateRi is taken to
be identical to the un�ltered reaction rate Ri = Ri . This assumption is valid for laminar
ows
or turbulent
ows where the computational grid is �ne enough to resolve all turbulence-chemistry
interactions. In OpenFOAM, this approach is implemented in the laminar class under the namespace
of combustionModel.

2.3.2 Partially Stirred Reactor (PaSR)

The Partially Stirred Reactor (PaSR) from OpenFOAM [16] model modi�es the reaction source
term by kappa (�), a reacting volume fraction based on the ratio of chemical and turbulent mixing
timescales. The reacting source term is de�ned as

Ri = � � Ri (Yi); (2.5)

where � is
� =

� c

� c + � k
; (2.6)

where Ri is the reaction rate of speciei , Yi is the specie that passes to reaction rate,� c is the
chemical time scale, and� k represents the turbulent mixing time scale. The� k is calculated as the
Kolmogorov time scale, it is de�ned in PaSR [16] at line 93

� k = Cmix

r
� e�

�
; (2.7)

where Cmix is the constant value provided by the user, default is 1,� e� is the e�ective viscosity
accounting for turbulence, and � is the turbulent dissipation rate. The chemical time scale� c which
is implemented in OpenFOAM de�ned in chemistryModel [17, 18] at line 446 is derived based on
reaction kinetics

� c =
ctot

P n R
j =1

P N s; RHS
i =1 � i;j kf;j

; (2.8)

where ctot is the total species concentration,nR is the number of chemical reactions,Ns;RHS is the
number of product species,� i;j is the stoichiometric coe�cient, and kf;j is the forward reaction rate
constant. The reacting volume fraction � is updated as

� =

(
1:0 if � k < small;

� c
� c + � k

otherwise:
(2.9)

This approach is particularly used for modeling of premixed and partially premixed
ames.

10

2.3. Reaction Rate Chapter 2. Theory

2.3.3 Dynamic Thickened Flame (DTF)

The DTF model is based on the thickened
ame (TF) approach as described by Legier et al. [13],
which is traditionally used to make
ames resolvable on coarse grids in large eddy simulations (LES).
In the TF approach, the
ame thickness is arti�cially increased by a factor F while maintaining the
correct
ame propagation speed. This is achieved by multiplying the species and thermal di�usion
coe�cients by F and reducing the reaction rate source term by the same factor. The species transport
equation from Eq.2.1 for the DTF model will be written as

@(�Y i)
@t

+ r � (� �! v Yi) = r � (�D iF r Yi) � RiF ; (2.10)

where, � is density, �! v is velcoity, D iF is modi�ed di�usion coe�cient scaled by the thickening factor
(F), and RiF is reaction rate source term.D iF and RiF are represented as

D iF ! DF; R iF !
1
F

Ri : (2.11)

2.3.3.1 Thickening Factor

The DTF model introduces a dynamic thickening factor (F) that varies both spatially and tempo-
rally, depending on the local combustion conditions. A sensor based on heat release, as described
in Eq.2.13, detects the presence of the
ame front and activates the thickening only within reaction
zones. The thickening factor (F) is de�ned as

F = 1 + (min (Fmax ; Fs) � 1)
 ; (2.12)

where
 is the heat release sensor,F is the thickening factor, Fmax is the maximum thickening factor
set by the user andFs is the thickening factor calculated dynamically over time and space.

2.3.3.2 Flame Sensor

The sensor
 is based on the heat release rate and is de�ned as

 = tanh(�
h

hmax
); (2.13)

whereh is the heat release rate andhmax is the maximum heat release and� controls the transition
layer thickness between thickened and non-thickened regions.

2.3.3.3 E�ciency Function

This dynamic adjustment ensures that the
ame remains resolvable in the grid while preserving
accurate mixing and di�usion characteristics in non-reactive regions. To account for the e�ects of
unresolved turbulence, the DTF model uses an e�ciency function (E), which modi�es the di�usion
coe�cients and reaction rate in Eq. 2.14 as

D iEF ! EFD; R iEF !
E
F

Ri ; (2.14)

where D iEF is the modi�ed di�usion coe�cient, RiEF is the modi�ed reaction rate source term, F
is the thickening factor, and E is the e�ciency function. The e�ciency function E is expressed as
the ratio between the wrinkling factor � of the real
ame � l = � 0

l and that of the thickened
ame
with thickness, � 1

l = F � 0
l as

E =
� j � l = � 0

l

� j � l = � 1
l

� 1; (2.15)

where � l is
ame thickness, � 0
l is the laminar
ame speed, and� 1

l is the turbulent
ame thickening.
To estimate a dimensionless wrinkling factor �, which is proposed by Colin et. al. [19, 20] de�ned as

11

2.3. Reaction Rate Chapter 2. Theory

the
ame surface to its projection in the propagating direction. It depends on velocity
uctuations
(u0

� e) and
ame parameters, which include laminar
ame speed (� 0
l), laminar
ame thickness (� l)

turbulent
ame thickening (� 1
l) and thickening Factor (F) as

� = 1 + �
u0

� e

S0
l

�
�

� e

� l
;

u0
� e

S0
l

�
; (2.16)

where

� =
2 ln 2

3cms
� p

Ret � 1
� ; cms = 0 :28; (2.17)

and � is a dimensionless stretch function

�
�

� e

� l
;

u0
� e

S0
l

�
� 0:75 exp

"

� 1:2
�

u0
� e

S0
l

� � 0:3
�

� e

� l

� 2=3

: (2.18)

The test �lter scale � e is chosen such that � e = � 1
l = F � 0

l > � x, which ensures the proper
ame
resolution. The � as desired in Eq. 2.17 is not implemented in the present implementation.� is set
by the user as constant value.

2.3.3.4 Laminar Flame Speed

In premixed combustion, the most important quantity is the velocity at which the
ame front
propagates normal to itself and relative to the
ow into the unburnt mixture. This velocity is called
the laminar
ame speed [21]. It is proportional to the thermal di�usivity (D) and the reaction rate
(R). Mathematically, the laminar
ame speed is expressed as

S0
l =

p
DR; (2.19)

where D represents the thermal di�usivity of the species andR represents the total reaction rate of
all the species. The thermal di�usivity is given by

D =
�

�c p
; (2.20)

where� is the thermal conductivity, � is the density, andcp is the speci�c heat capacity. The laminar

ame thickness (� L) is proportional to D

S0
l

and is expressed as

� l =
D
S0

l
: (2.21)

To simulate the laminar
ame on a coarse mesh without altering its speed, the
ame can be
arti�cially thickened by proportionally increasing the di�usivity (D) and decreasing the reaction
rate (1=R). The dynamic thickening factor (Fs) is de�ned as

Fs =
� N
� l

; (2.22)

where � is the grid size, � L is the laminar
ame thickness, and N is the user-speci�ed number of
points in the
ame. The grid size (�) is calculated as

� = V
1

N d ; (2.23)

where V is the cell volume andNd is the spatial dimension (2D or 3D).
.

12

Chapter 3

PaSR: OpenFOAM
Implementation

The combustion models in OpenFOAM are designed to simulate various types of reactive
ows de-
pending on the physical and chemical characteristics of the problem. ThePaSRmodel in OpenFOAM
is implemented to solve premixed or partially premixed reactive
ows. These combustion models
reside in the combustionModels directory:

src/combustionModels

This chapter provides a detailed explanation of the PaSRmodel's implementation, its depen-
dencies, and its role within OpenFOAM. Figure 3.1 illustrates the basic work
ow of PaSRand its
interaction with other components of the OpenFOAM source code.

Figure 3.1: The PaSRwork
ow and its implementation structure in OpenFOAM.

As shown in Fig. 3.1, thePaSRclass inherits from the laminar class. Thelaminar class utilize
pointer to dynamically allocate memory on the heap during runtime for calculating reaction rates and
heat release rates. ThecombustionModels class manages available combustion models based on user
speci�cations. The reactingFoam solver creates a pointer tocombustionModels to compute reaction
rates. During execution, combustionModels retrieves the user-speci�ed combustion model from the
combustionProperties con�guration �le from constant directory of case setup to calculate the
reaction rate.

The PaSR.C�le implements the reaction rate function, inheriting this functionality from the base
laminar class. ThePaSRimplementation �le is located in:

src/combustionModels/PaSR/PaSR.C

The PaSRsource code comprises the following components:

13

3.1. Registration Chapter 3. PaSR: OpenFOAM Implementation

ˆ Registration

ˆ Constructor for initializing the PaSRmodel with required parameters

ˆ Destructor

ˆ Member functions implementing calculation methods for the combustion model

3.1 Registration

In the �rst block, the PaSRcombustion model is registered asPaSRand added to the runtime selection
table in OpenFOAM as listed in Listing 3.1.

Listing 3.1: PaSR.C Registration
 namespace Foam
 {
 namespace combustionModels
 {
 defineTypeNameAndDebug(PaSR, 0);
 addToRunTimeSelectionTable(combustionModel, PaSR, dictionary);
 }
 }

OpenFOAM usesnamespacesto organize its code. Think of it like creating folders to keep related
�les together. The Foamnamespace is the top-level container that holds all of OpenFOAM's func-
tionality. Inside Foam, there's a speci�c namespace calledcombustionModels. This namespace is
where all the combustion-related code is placed, making it easier to �nd and manage models like
PaSR. Now, to make the PaSRmodel available in OpenFOAM, it needs to be registered in the code.
That's where defineTypeNameAndDebug(PaSR, 0)comes in. This line does two things:

1. It registers the PaSRmodel so OpenFOAM recognizes it as a combustion model.

2. The 0 means that debugging for this model is turned o� by default.

The �nal piece is adding the model to the runtime selection table.

 addToRunTimeSelectionTable(combustionModel, PaSR, dictionary);

The runtime selection table allows users to choose the combustion model they want to use directly
from their input �les (called dictionaries in OpenFOAM) without having to modify or recompile the
code. For example, if you want to use thePaSRmodel in a simulation, you simply include this line
in your dictionary �le, which is combustionProperties located in constant directory of the case
setup:

 combustionModel PaSR;

With these steps, OpenFOAM makes thePaSRmodel available and easy to con�gure for users. It's
a smart way to keep the framework
exible and user-friendly.

3.2 Constructor

The constructor initializes the PaSRmodel by reading con�guration �les and setting up model
parameters like Cmix and kappa (�) and initializes the laminar combustion model as listed in
Listing 3.2.

Listing 3.2: PaSR.C Constructor
 Foam::combustionModels::PaSR::PaSR
 (
 const word& modelType,

14

3.2. Constructor Chapter 3. PaSR: OpenFOAM Implementation

 const fluidReactionThermo& thermo,
 const compressibleMomentumTransportModel& turb,
 const word& combustionProperties
)
 :
 laminar(modelType, thermo, turb, combustionProperties),

 Cmix_(this->coeffs().template lookup<scalar>("Cmix")),
 kappa_
 (
 IOobject
 (
 thermo.phasePropertyName(typeName + ":kappa"),
 this->mesh().time().timeName(),
 this->mesh(),
 IOobject::NO_READ,
 IOobject::AUTO_WRITE
),
 this->mesh(),
 dimensionedScalar(dimless, 0)
)
 {}

The Foam::combustionModels::PaSR::PaSR(...) function is the constructor for the PaSRclass.
It initializes the model and sets up its essential parameters. This constructor is based on four key
arguments:

ˆ const word& modelType: Speci�es which type of combustion model is being initialized.

ˆ const fluidReactionThermo& thermo : Provides critical thermodynamic properties like tem-
perature and chemical composition.

ˆ const compressibleMomentumTransportModel& turb : Represents the turbulence model that
the combustion model will use.

ˆ const word& combustionProperties : Refers to the name of the �le where the combustion
properties are stored.

When the constructor is called, it ensures that all these components are correctly initialized to pre-
pare the model for simulation. The constructor also invokes the base class constructor,laminar(modelType,
thermo, turb, combustionProperties) . This step is crucial because it initializes all the shared
components of the combustion model. One of the parameters in thePaSRmodel isCmix . This value
is fetched to PaSRusing:

 Cmix_(this->coeffs().template lookup<scalar>("Cmix"))

Here, Cmix is read from the model's coe�cients �le. It represents the mixing rate co-e�cient, which
plays an essential role in how the model simulates the interaction between turbulence and chemical
reactions. Another important property in the PaSRmodel is kappa , which is a �eld representing a
model-speci�c property. Its setup involves a few steps:

1. Creating the IOobject for kappa :

ˆ thermo.phasePropertyName(typeName + ":kappa") : De�nes the name of the �le that
will store the kappa property.

ˆ this->mesh().time().timeName() : Speci�es the current time directory for the simula-
tion.

ˆ this->mesh() : Associates thekappa property with the computational mesh.

ˆ IOobject::NO READ: Indicates that the kappa �le will not be read initially.

ˆ IOobject::AUTO WRITE: Ensures that the �le is automatically updated and saved during
the simulation.

15

3.3. Destructor Chapter 3. PaSR: OpenFOAM Implementation

2. Initializing kappa : The line dimensionedScalar(dimless, 0) setskappa to a dimension-
less scalar value of 0 by default.

By combining these elements, OpenFOAM ensures that thePaSRmodel is not only well-organized
but also highly con�gurable and e�cient during simulations.

3.3 Destructor

The destructor is called when an object of thePaSRclass is destroyed. In this case, the destructor
does not perform any actions because it is empty:

 Foam::combustionModels::PaSR::~PaSR()

An empty destructor means no special cleanup is needed for this class.

3.4 Member Functions

The member functions consist of various methods to perform the required calculations for the com-
bustion model. These include functions to calculatekappa, reaction rate (R) inherited from the
laminar class, heat release rate (Qdot), and a function for reading model parameters.

3.4.1 correct()

The correct() function updates the kappa �eld based on turbulence and chemistry data. The
laminar::correct() function calls the correct() function of the base laminar class to per-
form necessary updates. Then, it retrieves the desired variablesepsilon and nuEff from the
turbulence model. The pointer to the chemical time scale (tc) de�nition is implemented in the
baseChemistryModel class. The code retrieves the output of the chemical time scale and stores it
in tc . These variables are required to calculate thekappa, which is described in Eq. 2.6. Thekappa
is calculated as shown in Listing 3.3.

Listing 3.3: PaSR.C correct()
 void Foam::combustionModels::PaSR::correct()
 {
 laminar::correct();

 tmp<volScalarField> tepsilon(this->turbulence().epsilon());
 const scalarField& epsilon = tepsilon();

 tmp<volScalarField> tnuEff(this->turbulence().nuEff());
 const scalarField& nuEff = tnuEff();

 tmp<volScalarField> ttc(this->chemistryPtr_->tc());
 const scalarField& tc = ttc();

 forAll(epsilon, i)
 {
 const scalar tk =
 Cmix_*sqrt(max(nuEff[i]/(epsilon[i] + small), 0));

 if (tk > small)
 {
 kappa_[i] = tc[i]/(tc[i] + tk);
 }
 else
 {
 kappa_[i] = 1.0;
 }
 }
 }

16

3.4. Member Functions Chapter 3. PaSR: OpenFOAM Implementation

3.4.2 R(volScalarField& Y)

The function Foam::combustionModels::PaSR::R returns a modi�ed reaction rate for the PaSR
combustion model after multiplying it with kappa . The reaction rate term is inherited from the
laminar combustion model. The implementation is shown in Listing 3.4.

Listing 3.4: PaSR.C R(volScalarField& Y)
 Foam::tmp<Foam::fvScalarMatrix>
 Foam::combustionModels::PaSR::R(volScalarField& Y) const
 {
 return kappa_*laminar::R(Y);
 }

3.4.3 Qdot()

Similarly, the Foam::combustionModels::PaSR::Qdot() function modi�es and returns the heat
release rate for the PaSR model after multiplying bykappa. It is implemented as shown in Listing
3.5.

Listing 3.5: PaSR.C Qdot()
 Foam::tmp<Foam::volScalarField>
 Foam::combustionModels::PaSR::Qdot() const
 {
 return volScalarField::New
 (
 this->thermo().phasePropertyName(typeName + ":Qdot"),
 kappa_*laminar::Qdot()
);
 }

3.4.4 read()

After Qdot, the read() function is implemented to look for the Cmixvalue in the combustionProperties
�le. It will return true if it �nds the value and false if not mentioned. The read() method ensures
the model's parameters are correctly updated during runtime.

To summarize, the PaSRmodel in OpenFOAM is a well-organized and e�cient framework for
simulating premixed or partially premixed reactive
ows. By following the structure and implemen-
tation details provided, users can e�ectively utilize and modify the PaSRmodel to suit their speci�c
simulation needs. Based on this learning, in the next chapter, we will implement theDTFmodel.

17

Chapter 4

DTF: Implementation

In this chapter, based on the learning from Chapter 2 and Chapter 3 the new TCI model will
be implemented that will work for non-premixed, partially premixed and premixed combustion.The
baseline code used in DTF is implemented by Rintanen [1] in his master thesis work [2], as Thickened
Flame Model (TFM). In comparison to the PaSR, the reactingFoam will calculate the reaction rates
in a similar way as computed for PaSR, beside this, DTFrequires modi�cations to the di�usion
coe�cient, which requires the implementation of thermoPhysicalTransport library. The DTFcode
interaction with other source code components in OpenFOAM is shown in Fig. 4.1.

Figure 4.1: DTFinteraction with other source code components in OpenFOAM

4.1 Introduction to PaSR& TFM

Before getting involved in any implementation, it is important to understand what PaSRand TFM
provide for implementing the DTFmodel. The explanation of PaSRin Chapter 3 is meant to give
the user an understanding of how thecombustionModel is implemented in OpenFOAM. PaSRwas
speci�cally chosen for this report due to its similarity with the implementation of TFMor DTF.

The next question is: If TFMis used as the base code forDTF, how does it compare with thePaSR
implementation? In PaSR, the correct() function computes thekappa �eld. This kappa �eld is then
used as a parameter to modify the reaction rate source term function (Foam::combustionModels::PaSR::R)
as return kappa *laminar::R(Y); , which modi�es the reaction rates, as well as the heat release
(Qdot).

In comparison, the TFM correct() function calculates the FlameSensor (S), ThickeningFactor
(F), and EfficiencyFunction (E). TFMwill initialize the member variables and functions neces-
sary for TFMcalculations. Similarly, it will pass the ThickeningFactor parameter (F) and the
EfficiencyFunction parameter (E) to the reaction rate source term and heat release instead of
kappa.

18

4.2. Introduction to TFM& DTF Chapter 4. DTF: Implementation

4.2 Introduction to TFM& DTF

The key di�erences betweenTFMand DTFare summarized in Table 4.1.

Table 4.1: Comparison ofTFMand DTFParameters

Parameters TFM DTF
Mesh Uniform Non-uniform (Tetra, Poly, Hexa)
Physics Laminar/DNS Laminar/DNS/LES
Laminar Flame Speed (S0

l) User-de�ned (Fixed Value) Computed (update/iteration)
Laminar Flame Thickness (� l) User-de�ned (Fixed Value) Computed (update/iteration)
Thickening Factor (F) User-de�ned (Fixed Value) Computed (update/iteration)
E�ciency Factor (E) Power-law Colin
Flame Sensor (S) Based on heat release OptimizedTFMsensor�

ThermophysicalTransportModels Modi�ed Library Same implementation as TFM
Flame Speed (S0

l & � l) Not implemented Implemented

� Optimized TFMsensor: The same sensor as inTFMis used, but �lters are applied to smooth the
values. The magnitude of the sensor is also taken to ensure positive values.

Other than the dynamic
ame sensor described in Eq. 2.13 and referenced in Table 4.1, a �xed
sensor is also part of the code. It is implemented forTFMand remains unchanged in the code forDTF.
The calculation of laminar
ame speed (S0

l) and laminar
ame thickness (� l) requires the reaction
rates of all species involved in the simulation and thermal di�usivity (D), as described in Eq. 2.20.
To perform these calculations, a new function,flameSpeed() , has been implemented. This function
calculates the laminar
ame speed (S0

l) and laminar
ame thickness (� l).
The DTFused the same tree structure for coding asTFMrepresented in Lisitng 4.1. The imple-

mentation of the DTFwill take a start from the existing TFMFoamcode. Begin by downloading the
TFMFoamcode from GitHub:

git clone https://github.com/arintanen/TFMFoam.git

After cloning the repository, verify the directory structure by running the following command inside
the TFMFoamfolder:

tree -L 2

Executing this command will generate a directory listing, as shown in Listing 4.1:

Listing 4.1: TFMFoam Directory
 |-- Allwclean
 |-- Allwmake
 |-- README.md
 |-- src
 | |-- combustionModels
 | |-- lnInclude
 | |-- ThermophysicalTransportModels
 |-- tutorials
 |-- combustionProperties

 |-- thermophysicalTransport

In the �rst step, compile TFMFoamusing the script ./Allwmake . Next, navigate to the combustionModels
directory and move the TFMcode to a folder namedDTF.

mv -rp TFM DTF

Change the directory and move to the newly createdDTFdirectory and rename the header and
constructor �les from TFMto DTF:

19

4.3. Registration Chapter 4. DTF: Implementation

cd DTF
mv TFM.H DTF.H
mv TFM.C DTF.C

Make the initial modi�cations to the TFMFoamdirectories and �les to set up the DTFframework.
Update the �le names and references using the following commands:

sed -i
s/\bTFM\b/DTF/g
 DTF.H
sed -i
s/\bTFM\b/DTF/g
 DTF.C
sed -i
1i DTF/DTF.C
 ../Make/files

Finally, compile the updated code with:

./../../../Allwmake

Once the framework forDTFis set up, the next step is to modify theDTFcode. In the implementation
process ofDTF, the report will try to connect with PaSRimplementation in Chapter 3. Follow the
steps below to update the code accordingly.

4.3 Registration

During the process of renaming the �les and updating �le content, the TFMregistration is updated
to the DTF, as represented in Lisitng 4.2.

Listing 4.2: "src/combustionModels/DTF/DTF.C", DTF Registration
 namespace Foam
 {
 namespace combustionModels
 {
 defineTypeNameAndDebug(DTF, 0);
 addToRunTimeSelectionTable(combustionModel, DTF, dictionary);
 }
 }

4.4 Constructor

4.4.1 Update the DTF.H

Add the following volScalarField variables for the reaction rate (tRR), di�usivity (D) and thick-
ening factor (Fs) after the �rst line from Listing 4.3.

Listing 4.3: "src/combustionModels/DTF/DTF.H", Private volScalarField
 volScalarField F_, EF_; //first line
 volScalarField tRR_;
 volScalarField D_;
 volScalarField Fs_;

Next, add the following scalar variables after the �rst line of Lisitng 4.4.

Listing 4.4: "src/combustionModels/DTF/DTF.H",Private Scalars
 autoPtr<efficiencyFunction> efficiencyFunction_; //first line
 scalar upperLimit_;
 scalar lowerLimit_;
 scalar filters_;

Now, add the following protected member for the chemistry model.

20

4.4. Constructor Chapter 4. DTF: Implementation

Listing 4.5: "src/combustionModels/DTF/DTF.H", Protected Chemistry Pointer
 autoPtr<basicChemistryModel> chemistryPtr_;

Finally, de�ne the member function for
ame speed calculations in the member function section.

Listing 4.6: "src/combustionModels/DTF/DTF.H", Member Function
ameSpeed()
 void flameSpeed();

4.4.2 Update the DTF.C

Initialize the newly added members in the header �le. Add the volScalarField after EF initial-
ization

Listing 4.7: "src/combustionModels/DTF/DTF.C", EF Initialization
 EF_
 (
 IOobject
 (
 "EF",
 this->mesh().time().timeName(),
 this->mesh(),
 IOobject::NO_READ,
 IOobject::NO_WRITE

),
 this->mesh(),
 dimensionedScalar(dimless, 1)
),

and add the scalar after the followingefficiencyFunction initialization.

Listing 4.8: "src/combustionModels/DTF/DTF.C", E�ciency Function Initialization
 efficiencyFunction_(efficiencyFunction::New(turb.mesh(), coeffs(), turb, Fmax_)),

Here is the initialization of new variables, Listing 4.9 is the representation ofvolScalarField and
Listing 4.10 representsscalar .

Listing 4.9: "src/combustionModels/DTF/DTF.C", Constructor Members
 tRR_
 (
 IOobject
 (
 "tRR",
 mesh_.time().timeName(),
 mesh_,
 IOobject::NO_READ,
 IOobject::NO_WRITE

),
 mesh_,
 dimensionedScalar("tRR", dimMass/dimVolume/dimTime, Zero)
),
 D_
 (
 IOobject
 (
 "D",
 mesh_.time().timeName(),
 mesh_,
 IOobject::NO_READ,
 IOobject::NO_WRITE
),
 mesh_,
 dimensionedScalar("D", dimLength*dimLength/dimTime, Zero)

21

4.5. Member Functions Chapter 4. DTF: Implementation

),
 Fs_
 (
 IOobject
 (
 "Fs",
 this->mesh().time().timeName(),
 this->mesh(),
 IOobject::NO_READ,
 IOobject::NO_WRITE
),
 this->mesh(),
 dimensionedScalar(dimless, 1)
),

Listing 4.10: "src/combustionModels/DTF/DTF.C", Constructor Members
 deltaL_(0.001),
 SL_(3),
 upperLimit_(this->coeffs().template lookup<scalar>("upperLimit")),
 lowerLimit_(this->coeffs().template lookup<scalar>("lowerLimit")),
 filters_(this->coeffs().template lookup<scalar>("filters")),
 chemistryPtr_(basicChemistryModel::New(thermo))

4.5 Member Functions

4.5.1 Implementation of the flameSpeed() Function

The flameSpeed() function is implemented to calculate the parameters required for the thickening
factor (F) and e�ciency function (E). Speci�cally, it computes the laminar
ame speed (Eq. 2.19)
and the laminar
ame thickness (Eq. 2.21). This section describes the step-by-step implementation
of the flameSpeed() function.

First, the flameSpeed() function is initiated inside the correct() function. This initiation
ensures that the required parameters are calculated during each time step. The initiation of
flameSpeed() within correct() is shown in Listing 4.11.

Listing 4.11: "src/combustionModels/DTF/DTF.C", correct();
 /// FlameSpeed switch, default is true. Set to false for cold (non-reactive) flows.
 const bool FlameSpeed = this->coeffs().lookupOrDefault("FlameSpeed", true);
 if (FlameSpeed)
 {
 flameSpeed();
 }

Next, the flameSpeed() function is implemented after the Qdot function. The flameSpeed()
function is de�ned as a void function, meaning it does not return any value and does not take any
arguments. The implementation of the flameSpeed() function is shown in Listing 4.12.

Listing 4.12: src/combustionModels/DTF/DTF.C,
ameSpeed(); Implementation
 void Foam::combustionModels::DTF::flameSpeed()
 {
 ... //flameSpeed() implementation
 }

The laminar
ame speed (S0
l) is proportional to the reaction rate and thermal di�usivity. The

reaction rate function (calculateRR) is implemented in the basicChemistryModel class of Open-
FOAM. To calculate the reaction rate in the flameSpeed() function, a chemistryPtr pointer is
created to dynamically allocate memory for the reaction rate function (calculateRR) on the heap.
The calculateRR function requires two input parameters: the species index number and the re-
action number. These parameters are extracted from thebasicChemistryModel class through the
chemistryPtr pointer, as shown in Listing 4.13.

22

4.5. Member Functions Chapter 4. DTF: Implementation

Listing 4.13: src/combustionModels/DTF/DTF.C,
ameSpeed(); Species Index and Reaction Num-
ber

 // Get the number of species
 const label nSpecie = chemistryPtr_->nSpecie();
 Info << "Number of species: " << nSpecie << endl;

 // Get the number of reactions
 const label nReaction = chemistryPtr_->nReaction();
 Info << "Number of reactions: " << nReaction << endl;

The reaction rate function (calculateRR) is implemented in Listing 4.14. The absolute value of
the reaction rate is taken usingFoam::magto ensure positive values for summation.

Listing 4.14: src/combustionModels/DTF/DTF.C,
ameSpeed(); Reaction Rate (calculateRR)
 ////////////////////////// Reaction Rate Calculations /////////////////////

 // Reset reaction rate for all cells to zero to ensure accurate summation for the current time
step

 forAll(tRR_.internalField(), celli)
 {
 tRR_[celli] = 0.0;
 }

 // Calculate the reaction rate for all reactions and species
 for (label ri = 0; ri < nReaction; ++ri)
 {
 for (label si = 0; si < nSpecie; ++si)
 {
 volScalarField::Internal RR = Foam::mag(chemistryPtr_->calculateRR(ri, si));
 forAll(RR, celli)
 {
 if (!std::isnan(F_[celli]) && F_[celli] > SMALL)
 {
 tRR_[celli] += RR[celli];
 }
 }
 }
 }

The total reaction rate tRR is reset to zero after every time loop to ensure that only the values of
the present instant are considered. After summing all absolute reaction rates, the results are passed
through a smoothing �lter. To use the smoothing �lter, include the header �le "fvcSmooth.H" along
with the other header �les at the top of the DTF.C�le. The implementation of the smoothing �lter
is shown in Listing 4.15.

Listing 4.15: src/combustionModels/DTF/DTF.C,
ameSpeed(); Reaction Rate (smoothFilter)
 volScalarField smoothed_tRR = tRR_; // filter variable tRR_

 // Smoothing filter
 fvc::smooth(smoothed_tRR, filters_);
 tRR_ = smoothed_tRR;

The flameSensor ->S() function is used to extract the values of the total reaction rate from
the
ame front. Listing 4.16 demonstrates how the reaction rate is extracted and calculated across
all processors.

Listing 4.16: src/combustionModels/DTF/DTF.C,
ameSpeed(); Reaction Rate (calculateRR)
 //////////////////////// Flame Sensor /////////////////////////
 volScalarField q_sensor = flameSensor_->S();
 scalar sumReactionRate = 0.0;
 scalar count = 0.0;
 Info << "Internal field size: " << q_sensor.internalField().size() << endl;

23

4.5. Member Functions Chapter 4. DTF: Implementation

 // Extract reaction rates between the set values of the flame sensor
 forAll(q_sensor.internalField(), celli)
 {

 if (q_sensor[celli] >= lowerLimit_ && q_sensor[celli] <= upperLimit_)
 {
 sumReactionRate += tRR_[celli];
 count++;
 }
 }

 // Parallel reduction for sum and count
 scalar globalSumReactionRate = sumReactionRate;
 scalar globalCount = count;
 reduce(globalSumReactionRate, sumOp<scalar>());
 reduce(globalCount, sumOp<scalar>());

 // Compute average reaction rate across all processors
 scalar avgReactionRate = (globalCount > 0) ? (globalSumReactionRate / globalCount) : 0.0;

 Info << "Average reaction rate (based on sensor): " << avgReactionRate << endl;

Similarly, the thermal di�usivity (D) is calculated, as described in Eq.2.3. While the reaction
rate calculation uses thecalculateRR function implemented in the basicChemistryModel class, the
thermal di�usivity calculation accesses the values of thermal conductivity (�), density (�), and heat
capacity (Cp) through the thermo pointer from the fluidReactionThermo class. Afterward, the
smoothing �lter and extraction of di�usion values from the reaction front follow the same procedure
as the reaction ratetRR calculation. The thermal di�usivity calculations are shown in Listing 4.17.

Listing 4.17: src/combustionModels/DTF/DTF.C,
ameSpeed(); Thermal Di�usivity Calculation
 ///////////////////////// Diffusion Calculations /////////////////////////
 const volScalarField& rhoField = Foam::combustionModel::thermo_.rho();
 const volScalarField& kappaField = Foam::combustionModel::thermo_.kappa();
 const volScalarField& CpField = Foam::combustionModel::thermo_.Cp();

 forAll(this->mesh().V(), celli)
 {
 scalar rho = rhoField[celli];
 scalar lambda = kappaField[celli];

 scalar cp = CpField[celli];

 if (rho > SMALL && cp > SMALL)
 {
 D_[celli] = lambda / (rho * cp);
 }
 else
 {
 D_[celli] = 0;
 }
 }
 Info << "Maximum Diffusion, D_: " << Foam::gMax(D_) << endl;
 Info << "Minimum Diffusion, D_: " << Foam::gMin(D_) << endl;

 // Smoothing filter
 volScalarField smoothed_D = D_;
 fvc::smooth(smoothed_D, filters_);
 D_ = smoothed_D;
 Info << "Smoothed Diffusion: Maximum: " << Foam::gMax(D_) << ", Minimum: " << Foam::gMin(D_) <<

endl;

 scalar sumD = 0.0;
 scalar countD = 0.0;
 // Extracting values of diffusion between the set values of the flame sensor
 forAll(q_sensor.internalField(), celli)
 {
 if (q_sensor[celli] >= lowerLimit_ && q_sensor[celli] <= upperLimit_)
 {

24

4.5. Member Functions Chapter 4. DTF: Implementation

 sumD += D_[celli];
 countD++;
 }
 }

 // Parallel reduction for sumD and countD
 scalar globalSumD = sumD;
 scalar globalCountD = countD;
 reduce(globalSumD, sumOp<scalar>());
 reduce(globalCountD, sumOp<scalar>());

 // Compute average D across all processors
 scalar avgD = (globalCountD > 0) ? (globalSumD / globalCountD) : 0.0;

 Info << "Average Diffusion (based on sensor): " << avgD << endl;

After calculating the reaction rate and thermal di�usivity, the laminar
ame speed (S0
l) and

laminar
ame thickness (� l) are computed inside theflameSpeed() function, as shown in Listing
4.18.

Listing 4.18: src/combustionModels/DTF/DTF.C,
ameSpeed(); Laminar Flame Speed and Thick-
ness Calculation

 void Foam::combustionModels::DTF::flameSpeed()
 {
 ///////////////////////// Diffusion Calculations /////////////////////////
 const volScalarField& rhoField = Foam::combustionModel::thermo_.rho();
 const volScalarField& kappaField = Foam::combustionModel::thermo_.kappa();
 const volScalarField& CpField = Foam::combustionModel::thermo_.Cp();

 forAll(this->mesh().V(), celli)
 {

 scalar rho = rhoField[celli];
 scalar lambda = kappaField[celli];
 scalar cp = CpField[celli];

 if (rho > SMALL && cp > SMALL)
 {
 D_[celli] = lambda / (rho * cp);
 }
 else
 {
 D_[celli] = 0;
 }
 }
 Info << "Maximum Diffusion, D_: " << Foam::gMax(D_) << endl;
 Info << "Minimum Diffusion, D_: " << Foam::gMin(D_) << endl;

 // Smoothing filter
 volScalarField smoothed_D = D_;
 fvc::smooth(smoothed_D, filters_);
 D_ = smoothed_D;
 Info << "Smoothed Diffusion: Maximum: " << Foam::gMax(D_) << ", Minimum: " << Foam::gMin(D_) <<

endl;

 //////////////////////// Flame Speed and Thickness ///////////////////////
 Info << "Starting laminar flame speed (SL_) and thickness (deltaL_) calculation..." << endl;

 if (avgReactionRate > SMALL && avgD > SMALL)
 {
 SL_ = sqrt(avgReactionRate * avgD);
 deltaL_ = avgD / SL_;

 // Clamp values to avoid unrealistic results
 if (SL_ > 50)
 {
 Info << "SL_ exceeds 50, clamping to 50." << endl;
 SL_ = 50;

25

4.5. Member Functions Chapter 4. DTF: Implementation

 }

 if (deltaL_ > 10)
 {
 Info << "deltaL_ exceeds 10, clamping to 10." << endl;
 deltaL_ = 10;
 }
 }
 else
 {
 // Use default values if calculations fail
 SL_ = this->coeffs().template lookup<scalar>("SL");
 deltaL_ = this->coeffs().template lookup<scalar>("deltaL");
 }

 Info << "Completed laminar flame speed (SL_) and thickness (deltaL_) calculation." << endl;
 }

4.5.2 Update Thickening Factor

The next step is to update the thickening factor (F) (Eq. 2.12) and e�ciency (E) (Eq. 2.18).
Replace the following code inside thecorrect(); function:

F_ = (Fmax_-1)*flameSensor_->S() +1;

with the following implementation in Listing 4.19

Listing 4.19: "src/combustionModels/DTF/DTF.C", Thickening Factor Update
 forAll(F_, celli)
 {
 scalar delta_g = pow(mesh_.V()[celli], 1.0 / static_cast<scalar>(mesh_.nGeometricD()));
 if (deltaL_ > SMALL)
 {
 scalar Fvalue = (delta_g * this->coeffs().template lookup<scalar>("N")) / deltaL_;
 Fs_[celli] = min(Fvalue, Fmax_);
 scalar sensorValue = flameSensor_->S()[celli];
 F_[celli] = 1 + (Fs_[celli] - 1) * sensorValue;

 if (F_[celli] < 1) F_[celli] = 1;
 }
 else
 {
 F_[celli] = 1.0;
 }
 }

Next, replace the e�ciency-thickening factor multiplication code:

EF_ = efficiencyFunction_->E()*F_;

with the following implementation as listed in Listing 4.20.

Listing 4.20: "src/combustionModels/DTF/DTF.C", EF Factor Update
 forAll(EF_, celli)
 {
 EF_[celli] = efficiencyFunction_->E()[celli] * F_[celli];
 }

with these changes, the implementation inside thecorrect(); function is now complete. The next
step is to implement the e�ciency function (E). The e�ciency function (E) requires the laminar

ame speed (S0

l), the laminar
ame thickness (� l), and the thickening factor (F).

26

4.5. Member Functions Chapter 4. DTF: Implementation

4.5.3 E�ciency Function Implementation in DTF

Previously, the e�ciency function (E) was implemented outside theTFMclass. To make the e�ciency
function dynamic, there are several ways to introduce the variables calculated inside theDTFclass to
the e�ciency function class. One approach is through getter functions. In this implementation, the
required parameters are introduced to the e�ciency function (E) via getter functions. This requires
modi�cations to the header and constructor �les of DTF.

4.5.3.1 Adding Getter Functions to DTF.H

Add the following getter functions to the member section of theDTF.Hheader �le as shown in Listing
4.21.

Listing 4.21: "src/combustionModels/DTF/DTF.H", DTF.H Getter Functions
 scalar deltaL() const { return deltaL_; }
 scalar SL() const { return SL_; }
 scalar filters() const { return filters_; }
 const volScalarField& F() const { return F_; }

4.5.3.2 Update the E�ciency Function Constructor DTF.C

Next, update the constructor to include a pointer (*this) for initializing the e�ciency function
inside the DTF.C�le. This pointer makes the getter functions accessible to the e�ciency function
class. The updated constructor will look as represented in Listing 4.22.

Listing 4.22: "src/combustionModels/DTF/DTF.C", E�ciency Function Constructor
 efficiencyFunction_(efficiencyFunction::New(turb.mesh(), coeffs(), turb, Fmax_, *this)),

4.5.3.3 Update efficiencyFunction.H

Add the following line as a private member as listed in Listing 4.23.

Listing 4.23: "src/combustionModels/E�ciencyFunctions/e�ciencyFunction/e�ciencyFunction.H",
DTF Member

 const Foam::combustionModels::DTF& dtfModel_;

Next, update the runtime declaration of the e�ciency function to include the DTFparameter as
shown in Listing 4.24.

Listing 4.24: "src/combustionModels/E�ciencyFunctions/e�ciencyFunction/e�ciencyFunction.H",
E�ciency Function Runtime Update

 declareRunTimeSelectionTable
 (
 autoPtr,
 efficiencyFunction,
 dictionary,
 (
 const dictionary& dict,
 const fvMesh& mesh,
 const compressibleMomentumTransportModel& turb,

 scalar F,
 const Foam::combustionModels::DTF& dtfModel // Addition as the fifth member
),
 (dict, mesh, turb, F, dtfModel) // Pass DTF parameter
);

27

4.5. Member Functions Chapter 4. DTF: Implementation

4.5.3.4 Update efficiencyFunction.C

Add #include "DTF.H" in the header, then update the constructor with the DTFparameter as listed
in Listing 4.25.

Listing 4.25: "src/combustionModels/DTF/DTF.C", E�ciency Function Constructor Update
 Foam::efficiencyFunction::efficiencyFunction
 (
 const dictionary& dict,
 const fvMesh& mesh,
 const compressibleMomentumTransportModel& turb,
 scalar Fmax,
 const Foam::combustionModels::DTF& dtfModel // DTF as fifth member
)
 :

 mesh_(mesh),
 E_(
 IOobject
 (
 "E",
 mesh().time().timeName(),
 mesh(),
 IOobject::NO_READ,
 IOobject::NO_WRITE
),
 mesh,
 dimensionedScalar(dimless, 1)
),
 F_(Fmax),
 turb_(turb),
 dtfModel_(dtfModel) // DTF initialization
 {
 }

4.5.3.5 Update efficiencyFunctionNew.C

Add #include "DTF.H" in the header, then update the constructor with the DTFparameter as
described in Listing 4.26.

Listing 4.26: "src/combustionModels/E�ciencyFunctions/e�ciencyFunction/e�ciencyFunction.H",
E�ciency Function Constructor Update

 Foam::autoPtr<Foam::efficiencyFunction> Foam::efficiencyFunction::New
 (
 const fvMesh& mesh,
 const dictionary& dict,
 const compressibleMomentumTransportModel& turb,
 scalar F,
 const Foam::combustionModels::DTF& dtfModel // DTF
)
 {

 const word modelType(dict.lookup("efficiencyFunction"));

 Info<< "Selecting efficiency function model " << modelType << endl;

 dictionaryConstructorTable::iterator cstrIter =
 dictionaryConstructorTablePtr_->find(modelType);

 if (cstrIter == dictionaryConstructorTablePtr_->end())
 {
 FatalIOErrorInFunction
 (
 dict
) << "Unknown efficiency function type "
 << modelType << nl << nl
 << "Valid efficiency function types are :" << endl

28

4.5. Member Functions Chapter 4. DTF: Implementation

 << dictionaryConstructorTablePtr_->sortedToc()
 << exit(FatalIOError);
 }

 return autoPtr<efficiencyFunction>(cstrIter()(dict, mesh, turb, F, dtfModel)); // DTF parameter
 }

4.5.3.6 Colin E�ciency Function Implementation

Now, implement the Colin e�ciency function inside the EfficiencyFunction directory. Create the
folder ColinEfficiencyFunction , and then create two �les, colin.H and colin.C , in the following
directory:

src/combustionModels/EfficiencyFunctions

mkdir ColinEfficiencyFunction
cd ColinEfficiencyFunction
touch colin.H
touch colin.C

The code to calculate theColin e�ciency is implemented in the colin.C �le. The complete content
of colin.H and colin.C can be found in Appendix A. The Colin e�ciency function is described in
Sec. 2.3.3.3, and this section explains its implementation as described in Listing 4.27.

Listing 4.27: "src/combustionModels/E�ciencyFunctions/colin.C", correct() Function
 void Foam::efficiencyFunctionModels::colin::correct() {
 scalar delta_L = dtfModel_.deltaL(); //Laminar Flame Thickness from DTF class
 scalar SL_ = dtfModel_.SL(); //Laminar Flame Speed from DTF class
 scalar Filters_ = dtfModel_.filters(); //Filters to smooth the velocity fluctuations from DTF

class
 const volScalarField& delta_ = mesh_.lookupObject<volScalarField>("delta"); // delta from LES co-

efficient dict
 const volScalarField& Fc_ = dtfModel_.F(); //Dynamic thickening Factor from DTF class

 // Check validity of inputs
 if (delta_L <= 0) {

 FatalErrorInFunction << "Invalid flame thickness (delta_L): " << delta_L << exit(FatalError);
 }
 if (SL_ <= 0) {
 FatalErrorInFunction << "Invalid flame speed (SL_): " << SL_ << exit(FatalError);
 }
 Info << "Flame Thickness (delta_L): " << delta_L << endl;
 Info << "Flame Speed (SL_): " << SL_ << endl;

 // Calculate uPrime_ using filtered U field
 volVectorField U_hat(turb_.U());
 Info << "Uhat_ computed successfully." << endl;

 for (int i = 0; i < Filters_; i++) {
 U_hat = sFilter_(U_hat);
 }

 // Ensure delta_ is valid
 if (delta_.internalField().size() == 0) {
 FatalErrorInFunction << "delta_ field is empty or uninitialized." << exit(FatalError);
 }
 uPrime_ = 2.0 * mag(pow(delta_, 3) * fvc::laplacian(fvc::curl(U_hat)));

 // Calculate the efficiency
 forAll(E_, celli) {
 scalar delta_e = Fc_[celli] * delta_L;

 if (delta_e <= 0) {

29

4.5. Member Functions Chapter 4. DTF: Implementation

 WarningInFunction << "Invalid delta_e at cell " << celli << endl;
 E_[celli] = 1.0; // Assign minimum efficiency to avoid invalid calculations
 continue;
 }
 scalar delta_r = delta_e / delta_L;
 scalar delta_R = delta_e / (delta_L * Fc_[celli]);

 if (delta_r <= 0 || delta_R <= 0) {
 FatalErrorInFunction << "Invalid delta_r or delta_R values." << exit(FatalError);
 }

 scalar up_SL_r = (uPrime_[celli] * delta_e) / SL_;

 if (up_SL_r <= 0) {
 WarningInFunction << "Invalid up_SL_r at cell " << celli << endl;
 E_[celli] = 1.0; // Assign minimum efficiency to avoid invalid calculations
 continue;
 }

 scalar numerator = 1.0 + alpha_ * 0.75 * exp(-1.2 / pow(up_SL_r, 0.3)) * pow(delta_r, 2.0 /
3.0) * up_SL_r;

 scalar denominator = 1.0 + alpha_ * 0.75 * exp(-1.2 / pow(up_SL_r, 0.3)) * pow(delta_R, 2.0 /
3.0) * up_SL_r;

 if (denominator <= 0) {
 WarningInFunction << "Invalid denominator at cell " << celli << endl;
 E_[celli] = 1.0; // Assign minimum efficiency to avoid division by zero
 continue;
 }

 scalar efficiency = numerator / denominator;

 // Enforce the condition E >= 1
 E_[celli] = max(efficiency, 1.0);
 }
 }

4.5.4 R(volScalarField& Y)

The function Foam::combustionModels::DTF::R returns a modi�ed reaction rate for the DTFcom-
bustion model after multiplying it with efficiencyFunction ->E()/F . The reaction rate term is
inherited from the laminar combustion model. The implementation is shown in Listing 4.28.

Listing 4.28: DTF.C R(volScalarField& Y)
 Foam::tmp<Foam::fvScalarMatrix>
 Foam::combustionModels::DTF::R(volScalarField& Y) const
 {
 return efficiencyFunction_->E()/F_*laminar::R(Y);
 }

4.5.5 Qdot()

Similarly, the Foam::combustionModels::DTF::Qdot() function modi�es and returns the heat re-
lease rate for the DTF model after multiplying by efficiencyFunction ->E()/F . It is implemented
as shown in Listing 4.29.

Listing 4.29: DTF.C Qdot()
 Foam::tmp<Foam::volScalarField>
 Foam::combustionModels::DTF::Qdot() const
 {
 return volScalarField::New
 (

30

4.6. DTFThermophysicalTransportModels Chapter 4. DTF: Implementation

 this->thermo().phasePropertyName(typeName + ":Qdot"),
 fficiencyFunction_->E()/F_*laminar::Qdot()
);
 }

4.6 DTFThermophysicalTransportModels

The modi�cation of the di�usion coe�cient requires scaling the mass di�usion coe�cient and thermal
di�usion coe�cient. These modi�cations of the di�usion coe�cient are implemented in TFMand DTF
will use the same implementation to modify the di�usion coe�cient. The ThermophysicalTransportModels
code is available insrc directory of the provided code. The modi�cation done to the di�usivity term
is represented in Listing 4.30.

Listing 4.30: "src/ThermophysicalTransportModels/turbulence/DTFunityLewisEddyDi�usivity/
DTFunityLewisEddyDi�usivity.H",Modi�cation to Di�usivity

 virtual tmp<volScalarField> DEff(const volScalarField& Yi) const
 {
 const volScalarField& EF = mesh_.lookupObject<volScalarField>("EF"); // look for EF value
 return volScalarField::New
 (
 "DEff",
 this->thermo().kappa()/this->thermo().Cp()*EF + this->alphat() //EF multiplied to

scale the diffusivity term
);
 }

Now, change the folder toDTFmain folder, where it contains the Allwmake and Allwclean �les and
compile the code by running./Allwmake command.

31

Chapter 5

Test Cases and Results

In order to evaluate the implemented combustion model, two test cases have been prepared. These
test cases are designed to address di�erent levels of complexity and computational resource require-
ments. The details of the test cases are as follows:

ˆ Case 01: This is a simpli�ed test case to run simulation on a personal computer. It involves
the simulation of a 3D freely propagating hydrogen
ame usingDTF.

ˆ Case 02: This case focuses on a turbulent hydrogen
ame based on the AHEAD burner.
The simulation was conducted using theDTFmodel, and the results were compared with
experimental data and reference numerical results from the literature.

Readers can use the accompanying �les to run the cases. The step-by-step process is to �rst
source the OpenFOAM-v10 and then run the Allrun script to simulate the individual case.

Figure 5.1: Case 01: Computational Domain

5.1 Case 01: 3D Freely Propagating Hydrogen Flame

The case setup consists of a 3D box, as illustrated in Fig. 5.1. Fig. 5.1(a) shows the mesh used for the
simulation, while Fig. 5.1(b) displays the patch values for temperature. The red region represents
the patch with burnt gas temperature and burnt species (water), while the blue patch corresponds
to unburnt gas temperature and species (hydrogen, nitrogen, and oxygen). The box has dimensions
of 0:1 m in width, height, and length along the x, y, and z directions. The grid is uniformly

32

5.1. Case 01: 3D Freely Propagating Hydrogen Flame Chapter 5. Test Cases and Results

distributed, with each direction divided into 100 cells. The
ow moves along the x-direction. The
boundary conditions include inlet and outlet along the
ow direction. The top and bottom of
the domain are de�ned assymmetryPlane and are labeledsymm1and symm2, respectively. The left
and right sides, namedfrontAndBack , are modeled aszeroGradient walls. The
ow is initialized
with a �xed velocity of 0 :026 m/s at a temperature of 300 K. The composition of the
ow consists
of 1:45% hydrogen, 22:96% oxygen, and 75:58% nitrogen from the inlet by mass. ThesetFields
utility is used to patch the values of unburnt and burnt mixtures to the domain. The patch scripts
are placed insystem directory of case setup. The simulation is run for 1 second with a time step size
of 0:0001 s. The combustion model settings are provided in thecombustionProperties �le, where
the combustion model name and other required coe�cients are speci�ed, as shown in Listing 5.1.

Listing 5.1: constant/combustionProperties
 combustionModel DTF;

 DTFCoeffs
 {
 //efficiencyFunction none;
 efficiencyFunction colin;

 colinCoeffs
 {

 alpha 0.02;
 n_filters 10; // Number of filtering operations
 }
 Fmax 15; // Maximum thickening factor
 N 3; // Control parameter for flame thickening
 FlameSpeed true;
 lowerLimit 0.99; // Flame sensor upper value
 upperLimit 1; // Flame sensor lower value
 filters 2;
 //flameSensor none;
 flameSensor tanh;
 tanhCoeffs {
 beta 10;
 n_filters 10;
 }
 }

The coe�cients required for the DTFcombustion model include the following:

ˆ F max: The maximum threshold set by the user.

ˆ N: Represents the number of cells.

ˆ FlameSpeed: A switch to enable or disable theFlameSpeedfunction.

ˆ lowerLimit : The value provided to the flameSensor to extract reaction rate and di�usivity
values.

ˆ upperLimit : The upper threshold for the flameSensor .

ˆ filters : Speci�es the number of �lters used to smooth
uctuations in reaction rate, di�usivity,
and velocity.

The flameSensor o�ers two options: none and tanh . If tanh is selected, additional parameters
beta and n filters must be provided. Similarly, the e�ciency function can be set to either none
or colin . If colin is chosen, thealpha parameter must be speci�ed.The con�guration of the
thermophysicalTransportModel is provided in Listing 5.2.

Listing 5.2: constant/thermophysicalTransport
 LES
 {

33

5.2. Case 02: Turbulent Hydrogen Flame Chapter 5. Test Cases and Results

 model DTFunityLewisEddyDiffusivity;
 Prt 0.85;
 }

The implemented library names are speci�ed at the end of thecontrolDict �le. When users
provide these names, the implementedcombustionModel and thermoPhysicalTransport libraries
become accessible to OpenFOAM, as shown in Listing 5.3.

Listing 5.3: system/controlDict
 libs
 (
 "libDTFcombustion.so"
 "libDTFtransport.so"
);

The simulations are carried out using the hydrogen mechanism provided by Capurso et al. [22].
The remaining case setup �les, includingchemistryProperties and thermoPhyscialProperties ,
along with other case setup �les, are listed in Appendix B.

5.1.1 Results

Fig. 5.2 represents the
ame propagation, showing how the temperature propagates from the middle
of the plane towards the fuel inlet.

Figure 5.2: z-plane at z = 0, at di�erent instants, showing the temperature �eld at times t = 0 :003 s
and t = 0 :069 s.

5.2 Case 02: Turbulent Hydrogen Flame

The computational domain for the AHEAD burner, considered for the simulation, is represented in
Fig. 5.3. The domain consists of fuel inlets, an air inlet, fuel injectors, swirl generators, dilution holes,
a mixing chamber, and a combustion chamber. Experimental studies on this setup were conducted

34

	Introduction
	Motivation and Background
	Report Outline

	Theory
	Governing Equations
	Diffusion
	Reaction Rate
	Laminar Model
	Partially Stirred Reactor (PaSR)
	Dynamic Thickened Flame (DTF)
	Thickening Factor
	Flame Sensor
	Efficiency Function
	Laminar Flame Speed

	PaSR: OpenFOAM Implementation
	Registration
	Constructor
	Destructor
	Member Functions
	correct()
	R(volScalarField& Y)
	Qdot()
	read()

	DTF: Implementation
	Introduction to PaSR & TFM
	Introduction to TFM & DTF
	Registration
	Constructor
	Update the DTF.H
	Update the DTF.C

	Member Functions
	Implementation of the flameSpeed() Function
	Update Thickening Factor
	Efficiency Function Implementation in DTF
	Adding Getter Functions to DTF.H
	Update the Efficiency Function Constructor DTF.C
	Update efficiencyFunction.H
	Update efficiencyFunction.C
	Update efficiencyFunctionNew.C
	Colin Efficiency Function Implementation

	R(volScalarField& Y)
	Qdot()

	DTFThermophysicalTransportModels

	Test Cases and Results
	Case 01: 3D Freely Propagating Hydrogen Flame
	Results

	Case 02: Turbulent Hydrogen Flame
	Validation

	Developed Codes
	Dynamic Thickened Flame Header, DTF.H
	Dynamic Thickened Flame Constructor, DTF.C
	Efficiency Function: Colin Header, colin.H
	Efficiency Function Colin Constructor, colin.C

	Case 01 Setup
	Allclean and Allrun Scripts
	0 Directory
	constant Directory
	system Directory

